

2025

MATHEMATICS

(Major)

Paper : MAT0500404

(Abstract Algebra)

Full Marks : 60

Time : 2½ hours

The figures in the margin indicate full marks
for the questions.

1. Answer the following : 1×8=8

(a) State the Lagrange's theorem on order
of subgroups of a group.

(b) If H and K are two finite subgroups of a
group, then which of the following is
true?

(i) $O(HK) = \frac{O(H) + O(K)}{O(H \cap K)}$

(ii) $O(HK) = \frac{O(H) O(K)}{O(H \cap K)}$

(iii) $O(HK) = O(H) + O(K)$

(iv) $O(HK) = O(H) O(K)$

(c)

Write True or False :

“Order of a cyclic group is equal to the order of its generators.”

(d)

Give an example of a left ideal which is not a right ideal.

(e)

Express the permutation

$$\begin{pmatrix} a & b & c & d & e & f & g \\ c & d & e & g & f & b & a \end{pmatrix}$$

as a cycle.

(f)

Under what condition,

$$\mathbb{Z}_p = \{0, 1, 2, \dots, (p-1)\}$$

modulo p will be a field?

$$1 < p$$

(g)

When will an element in a ring be called a nilpotent element? ~~if~~

if there is zero ideal

(h)

Give an example of a prime ideal of a ring which is not a maximal ideal in that ring.

2. Answer any six from the following : $2 \times 6 = 12$

(a) Let G be a group and a be any element of G . Show that $\langle a \rangle$, the subset generated by a , is a subgroup of G .

(b) Define a ring homomorphism and its kernel.

(c) Show that every subgroup of a cyclic group is a cyclic group.

(d) Define the centre of a group and calculate the centre of S_3 .

(e) ~~Show that the centre of any group G is a normal subgroup of G .~~

(f) If $G = Z(G)$ is cyclic, then show that G is Abelian.

(g) If Z is the ring of integers and $H = \{3n : n \in Z\}$, then write all right cosets of H in Z .

(4)

(h) If x is an element of a group and x^n = the identity element of the group, then show that the order of x divides n .

(i) Show that every ideal of the ring of integers is a principal ideal.

(j) If $f : R \rightarrow S$ is a ring homomorphism, then show that kernel of f is an ideal of R .

3. Answer any four from the following : $5 \times 4 = 20$

(a) If f is a group homomorphism from G onto H , then show that $H \cong G / K$, where K is the kernel of f .

(b) Describe in pictures the elements of the dihedral group D_4 of the symmetries of a square.

(c) Write all subgroups of Z_{30} .

(d) Suppose $f : G \rightarrow H$ is a group homomorphism, then prove the following : $2+2+1=5$

(i) If e is the identity of G , then $f(e)$ is the identity of H .

(iii) If K is a subgroup of G , then $f(K)$ is a subgroup of H .

(iii) If a is an element of G , then $f(a^{-1}) = (f(a))^{-1}$.

(e) Define a transposition in permutation. Show that every permutation can be expressed as a product of transpositions.

(f) If D is a commutative ring without zero-divisors, show that the characteristic of D is either a zero or a prime number.

(g) If P and Q are two ideals of a ring R , then show that $P+Q$ is again an ideal of R containing each of P and Q .

(h) Define zero-divisor in a ring. Show that a finite integral domain is a field. Give an example of an integral domain which is not a field. 1+3+1=5

4. Answer any two from the following : $10 \times 2 = 20$

(a) (i) Define a quotient group. Show that every quotient group of a cyclic group is cyclic. 5

(6)

(ii) Show that a group of prime order has no non-trivial subgroup. 2

(iii) If a is an integer and p is a prime, show that $a^p \equiv a \pmod{p}$. 3

(b) (i) Define even and odd permutations. Show that a cycle of even length is an odd permutation and a cycle of odd length is an even permutation. 2+3=5

(ii) Compute $a^{-1}bab^{-1}$ where $a = (135)(14)$ and $b = (2576)$. 4

(iii) Find the generators of the group $\{1, -1, i, -i\}$ with multiplication. 1

(c) Show that every group is isomorphic to a permutation group.

(d) If R is a commutative ring with unity, then show that an ideal M will be a maximal ideal in R if and only if R / M is a field.

(7)

(e) (i) Prove that a group homomorphism f will be one-one if and only if the kernel of f contains only the identity element. 5

(ii) Prove that a subgroup of index 2 in a group is a normal subgroup. 5

★ ★ ★

Q.d)

$$\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$$

Even